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GENERAL DESCRIPTION OF THE WORK

Relevance of the topic. Among the important lessons from quantum field theory on curved space-
times is the dependence of the vacuum and particle notions on the observer. The natural mode func-
tions used in the canonical quantization of fields may differ for different observers, giving rise to
different particle and vacuum states. If the Bogoliubov transformations mix the annihilation and cre-
ation operators corresponding to two sets of mode functions, the Bogoliubov [3-coefficient is different
from zero, and the vacuum states based on those sets are not equivalent: the vacuum state correspond-
ing to one set of modes contains particles of the other set of modes. The classical examples of two
inequivalent vacuum states in flat spacetime are the Minkowski and Fulling-Rindler (FR) vacua. They
are vacuum states for inertial and uniformly accelerating observers, respectively. The interest in the
quantization of fields in Rindler coordinates, which are the natural coordinates for uniformly accel-
erating observers, is motivated by several reasons. Firstly, it comes from the principal questions of
quantization of fields in geometries having horizons. The latter can be either observer-dependent (like
Rindler or de Sitter (dS) horizons) or determined by the matter distribution (examples are the black
hole horizons). The Rindler geometry is simple enough to allow exact solutions to different prob-
lems of quantum field theory to be found. This may shed light on the problems in more complicated
geometries, where the exact solutions are not available or are complicated. Next, the Rindler metric
approximates the black hole geometry in the near horizon limit, and the roots of several quantum field
theoretical phenomena around black holes can be found in the Rindler physics. An example is the
relation between the Unruh effect and Hawking radiation. Being a background with horizons, the
Rindler geometry is an interesting arena to investigate the phenomena of quantum entanglement.

Among the exciting effects of quantum field theory in curved backgrounds are the polarization of
the vacuum and particle creation by gravitational fields. In particular, these effects play an essential
role in the early Universe and near the black holes. An essential feature of vacuum polarization in
the presence of gravitational fields is the possibility of breaking the energy conditions in Hawking-
Penrose singularity theorems. This provides an opportunity to solve the singularity problem in Gen-
eral Relativity. The exact results for the physical characteristics describing the vacuum polarization
are obtained for highly symmetric gravitational fields. In particular, the dS and anti-de Sitter (AdS)
spacetimes have attracted a great deal of attention. Having the same number of symmetries as the
Minkowski spacetime, these geometries are maximally symmetric. They are vacuum solutions of the
Einstein equations with positive (dS) and negative (AdS) cosmological constants as the only source of
the gravitational field. The results for the influence of the gravitational fields on quantum matter, ob-
tained for dS and AdS bulks, may shed light on the effects of gravity in more complicated background
geometries. In addition to this, the popularity of the dS and AdS spacetimes in quantum field theory
is motivated by their important role in cosmology and in high-energy models with extra dimensions.

In accordance with the inflationary scenario, at the beginning of the evolution, the Universe went
through a phase of accelerating expansion, which is approximated by the dS spacetime. Several mod-
els have been proposed for the inflationary phase, the predictions of which can be tested by using
the recent observations of temperature anisotropies of the cosmic microwave background radiation.
On the other hand, the observational data on those anisotropies, high redshift supernovae, and galaxy
clusters indicate that the recent expansion of the Universe is dominated by a source of the cosmologi-
cal constant type. The relative contribution of the latter to the total energy density will increase during
the expansion, and the corresponding geometry asymptotes dS spacetime in the future. Hence, the dS
geometry appears as the past and future attractors for the expansion of the Universe. The dynamics
of quantum fields in AdS spacetime have long been an active field of research. The early interest was
related to the principal questions of the quantization procedure on curved backgrounds. The lack of



global hyperbolicity and the presence of both regular and irregular modes were among the new fea-
tures having no analogues in quantum field theory on the Minkowski bulk. The natural appearance
of AdS spacetime as a ground state in supergravity and Kaluza-Klein theories and also as the near-
horizon geometry of the extremal black holes and domain walls has further increased the interest in
quantum field theories on AdS bulk. The AdS spacetime has played an important role in two exciting
developments of theoretical physics during the last decade: AdS/conformal field theory (CFT) cor-
respondence and braneworld scenarios with large extra dimensions. The AdS/CFT correspondence
establishes a duality between two different theories: supergravity or string theory on asymptotically
AdS bulk from one side and conformal field theory on AdS boundary from another. It provides a vital
possibility to investigate strong coupling non-perturbative effects in one theory by mapping them to
the weak coupling region of dual theory. It has been applied in different physical settings, includ-
ing a variety of condensed matter systems. The braneworld paradigm naturally arises in the context
of supergravity and string theories and presents an alternative to Kaluza-Klein compactification of
extra dimensions. The models formulated on AdS bulk provide a geometrical solution for the hierar-
chy problem between the electroweak and gravitational energy scales, and also new perspectives and
different interpretations for various problems in particle physics and cosmology.

The aim of the thesis is to investigate the influence of the background gravitational field, the
spatial topology and boundaries on the properties of the vacuum state for quantum scalar, fermionic
and electromagnetic fields. In accordance with the equivalence principle, the features of the local
influence of the gravitational field can be studied considering the physical processes in non-inertial
reference frames. The thesis includes the investigations of the properties of the vacuum in a uniformly
accelerating reference frame (FR vacuum). The following problems are considered.

* Investigation of the vacuum expectation values (VEVs) of the field squared and current density
for a charged scalar field in the Rindler spacetime with a part of spatial dimensions compactified
to a torus.

* Investigation of the properties of the fermionic FR vacuum in a general number of spatial dimen-
sions. As local characteristics of the vacuum state, the fermion condensate (FC) and the VEV
of the energy-momentum tensor are considered, and their dependence on the spatial dimension
is studied.

* Properties of the electromagnetic vacuum around a topological defect in dS spacetime that gen-
eralizes the geometry of a cosmic string for a general number of spatial dimensions.

* Investigation of the quantum vacuum effects for a massive scalar field with general curvature
coupling parameter induced by two parallel branes orthogonal to the AdS boundary. The two-
point function, the VEVs of the field squared and energy-momentum tensor, and the Casimir
forces are studied.

Scientific novelty. The expectation values of the field squared and current density for a charged
scalar field in the FR vacuum are examined in Rindler spacetime with a compact subspace. Scalar
mode functions are found for general quasiperiodicity phases and the expression of the Hadamard
function is derived, where the corresponding function for the Minkowski vacuum is explicitly ex-
tracted. The VEVs are periodic functions of the magnetic flux enclosed by compact dimensions, with
the period equal to the flux quantum. The current density tends to zero on the Rindler horizon. The
difference in the current densities for the FR and Minkowski vacua is exponentially small for small
accelerations and lengths of compact dimensions. The local properties of the FR vacuum are studied
for a massive Dirac field in a general number of spatial dimensions. Corresponding fermionic normal
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modes are found, and the renormalized FC and the VEV of the energy-momentum tensor are explored.
The FC vanishes for massless fields and is negative for massive fields. The properties of the vacuum
energy-momentum tensor near the Rindler horizon are examined, showing weak dependence on the
mass for large accelerations and an exponential decay for small accelerations. The effects of back-
ground geometry and topology on the VEV of the energy-momentum tensor for the electromagnetic
field in locally dS spacetime are studied. The non-trivial topology is induced by a defect, which is
a generalization of a cosmic string. The topological contribution in the vacuum energy-momentum
tensor is explicitly extracted. Outside the defect core the renormalization is required only for the pure
dS part. The asymptotic behaviour of the topological contribution at small and large distances from
the defect core is studied. The influence of two parallel branes, orthogonal to the AdS boundary, on
the scalar vacuum in AdS spacetime is investigated. General Robin boundary conditions are imposed
on separate branes, and the positive frequency Wightman function is evaluated. The vacuum energy
density can be either negative or positive depending on the boundary conditions and the distance from
the branes. The asymptotics for points near and far from the branes are discussed in detail. The normal
and shear components of the Casimir forces, acting on the branes, are investigated. Their signs depend
on the Robin coefficients, the distance from the branes and the distance from the AdS boundary.

Practical importance. The mode functions for a scalar field in Rindler spacetime with a part of
spatial dimensions compactified to a torus can be used for the investigation of the effects of non-trivial
topology on the VEV of the energy-momentum tensor. The corresponding Wightman function can be
employed in studying the response of Unruh-de Witt-type particle detectors in a given state of mo-
tion. The fermionic Rindler modes presented in the thesis are easily generalized for spacetimes with
toroidally compact dimensions and general quasiperiodic conditions along them. With this general-
ization, those modes can be used to investigate the fermionic current density. In the particular case of
two-dimensional space, the corresponding results can be applied to carbon nanotubes within the frame-
work of the Dirac model for a long-wavelength description of the corresponding electronic subsystem.
The results for the vacuum energy-momentum tensor around a cosmic string can be used to investigate
the back reaction of quantum effects on the background geometry. Those results are also important
considering the evolution of vacuum fluctuations in the post-inflationary era of the Universe’s expan-
sion. The results obtained for the geometry of branes in AdS spacetime should be taken into account
when considering the stability of corresponding braneworlds. Within the framework of the AdS/CFT
correspondence, those results can also be used for the investigation of the boundary-induced effects
in conformal field theory living on the boundary of AdS spacetime.

The basic results to be defended are as follows:

1. The magnetic fluxes enclosed by compact spatial dimensions generate currents in the FR vac-
uum state for a charged scalar field in locally Rindler spacetime. The charge density and the
components of the current along uncompact dimensions vanish. The components of the current
in the compact subspace are periodic functions of the magnetic flux, with the period equal to
the flux quantum. They tend to zero on the Rindler horizon. The expectation value of the field
squared in the FR vacuum is an even periodic function of the magnetic flux. Depending on the
value of the proper acceleration, it can be either positive or negative.

2. For a massive Dirac field, the fermion condensate is negative in the FR vacuum state for the
general case of the spatial dimension and tends to zero in the massless limit. The correspond-
ing VEV of the energy-momentum tensor is diagonal, and the vacuum stresses are isotropic.
Compared to the Minkowski vacuum, the energy density and the effective pressures in the FR
vacuum are negative. For a massless field, the corresponding equation of state is of the ra-
diation type and the spectral distribution is thermal with the Unruh temperature. The thermal



distribution is of the Fermi-Dirac and Bose-Einstein types in odd and even numbers of spatial
dimensions, respectively.

3. For the Bunch-Davies vacuum state in locally dS spacetime and in the presence of a general-
ized cosmic string type defect, the expectation value of the energy-momentum tensor for the
electromagnetic field is not diagonal in spatial dimensions D > 3. The off-diagonal component
corresponds to the vacuum energy flux along the radial direction with respect to the defect core.
It is directed towards the cosmic string. The contributions in the vacuum stresses induced by
the cosmic string are anisotropic, and for D > 3 the stresses along the directions parallel to the
string core differ from the energy density. Depending on the planar angle deficit and the distance
from the cosmic string, the vacuum energy density and pressures can be positive or negative.
The influence of the gravitational field on the diagonal components of the energy-momentum
tensor is weak for points near the cosmic string and is essential at proper distances from the cos-
mic string larger than the dS curvature radius. At large distances, the topological contributions
in the diagonal components tend to zero like the inverse fourth power of the proper distance and
the energy flux behaves as the inverse-fifth power for all values of the spatial dimension. The
exception is the energy density in the special case D = 4.

4. The vacuum energy-momentum tensor for a massive quantum scalar field in the geometry of
two parallel branes perpendicular to the AdS boundary has a non-zero oft-diagonal stress. De-
pending on the coefficients in the Robin boundary conditions on the branes and the distance
from the branes, the vacuum energy density can be either positive or negative. The off-diagonal
component of the vacuum stress gives rise to the component of the Casimir force parallel to the
branes (shear force). If the boundary conditions on the separate branes are different, the corre-
sponding normal Casimir forces differ, and they can be either repulsive or attractive. Depending
on the coefficients in the boundary conditions, the shear force is directed toward or from the
AdS boundary. At large proper separations between the branes, compared to the AdS curvature
radius, both of the components of the Casimir forces exhibit a power-law decay.

Approbation of the work. The results of the thesis were reported at the conferences “Modern Physics
of Compact Stars and Relativistic Gravity” (Yerevan, 2021, 2023) and have been discussed at the
seminars of the Chair of Theoretical Physics of Yerevan State University and of the INFN National
Laboratory of Frascati (Frascati, Italy).

Publications. Five papers were published on the topic of the thesis.

Structure of the thesis. The thesis consists of an Introduction, three Chapters, a Conclusion, six
Appendices and a bibliography. It contains 172 pages, including 31 figures.

CONTENT OF THE THESIS

In Introduction, the scientific literature related to the topic of the thesis is reviewed, the relevance
of the topic is argued, the aim of the work, the scientific novelty and the practical value are presented,
and the primary results are described.

In Chapter 1, the VEV of the field squared and the vacuum currents are investigated for a charged
scalar field in Rindler spacetime with a toroidally compact subspace. In the Rindler coordinates, the
geometry is described by the (D + 1)-dimensional line element (units with ¢ = h = 1 are used)
ds? = p2dr? — dp? — dx2, where dx? = 27 (dz')* and 0 < p < oo. The worldline for given
(p, 22, ..., 27) corresponds to an observer with constant proper acceleration 1/p. The p-dimensional
subspace covered by Cartesian coordinates x, = (z?,...,2P"!) has trivial topology, R?, with the



range of variations —oo < 2! < oo forl = 2, .., p+ 1. The subspace corresponding to the coordinates
x, = (2P ..., zP) is compactified to a g-dimensional torus (S*)9, ¢ = D — p — 1. The length of
the compact dimension 2! will be denoted by L; and one has 0 < ! < L;forl = p+ 2,...,D.
Assuming the presence of an external classical gauge field with the vector potential A, the field
equation for a quantum charged scalar field () reads (¢* D,,D,, + m?) ¢ = 0, with spacetime point
x = (7,p,x) and gauge extended covariant derivative D, = V, + ieA,. Generic quasiperiodic
conditions ¢(t, &, x,, X, + Lie;) = e“p(t,£,%,,%,) are imposed along compact dimensions, where
| =p+2,...,D,and e is the unit vector along the dimension z'. By using the complete set of the
mode functions, obeying those conditions, a closed expression of the Hadamard function G(z, «’) for
the FR vacuum is derived for a gauge field with constant components A; along compact dimensions.

Given the Hadamard function, the VEV of the field squared is evaluated by using the relation
(p(x)p!(2)) = limy_,, G(z,2') /2. The corresponding expression reads

D-1 o foa 1 ( m\/4p cosh®u+ S0 | L2n2)
T — t _ m— = d i=p+2 1
(") = (o', R ;COS(nq a)/o u e , (1)
where n, = (np+2, np+3, co.snp), & = (Gpio,...,0Qp), Ny O = Zl:p—l—Q nay, and &y = oy + e A L.
In (1), >, np”_foo Z+°° and the function f,(z) is defined by f,(z) = 27K, (z),

where K, ( ) is the modified Bessel function. The Minkowskian VEV <g0goT>M is found by using
the finite temperature Hadamard function from [1]. The renormalization is required only for that
part. Note that the term eA; L, in the expression for &; can be written as eA; L, = —279;/®(, where
®y = 27/e is the flux quantum and @, is the magnetic flux enclosed by the /th compact dimension.
The Rinlder horizon corresponds to the limit p — 0 (large accelerations). Near the horizon the last
term in (1) dominates and the VEV <g0g0T> behaves as 1/p”~!. For small accelerations, corresponding
to large values of p, the difference <g0g0T> — <<p<pT>M is suppressed by the exponential factor ¢=2%+0,

where w2 = 327 io @7 /L7 +m? and it is assumed that |a;] < 7.

The VEV of the current density for a charged scalar field is obtained from the formula (j,) =
ielimg ,(9, — 0,,)G(x,2') /2. The charge density and the components along uncompact dimensions
vanish: (j,) =0, =0,1,...,p+ 1. The contravariant component along the /th compact dimension

is given by the expression

S m\/4p cosh?u 4+ Y27 oo LiN3)
u? 4+ 2 /4

. . 26mD+1L oo
<Jl> = <]l>M D+1 l an sin (n, - & / du . (2)
0

withl = p+2,..., D, and (j'); being the current density for the Minkowski vacuum. The current
density (2) is an odd periodic functions of &; with the period 27 and even periodic functions of &;,
1 # l,with the same period. This corresponds to the periodicity in the magnetic flux ®;. The current
density vanishes on the Rindler horizon, lim, ,o(j') = 0. Similar to the case of the field squared,
the difference of the current densities for FR and Minkowski vacua are exponentially small for small
acceleration, (j') — (j!)m o< €720, pwy > 1. In figure 1 the graphs for the current density are
plotted for the model D = 4 with a single compact dimension of the length L and ap /27 = 0.2.
The left panel presents the dependence of the current density on mp for different values of mL (the
numbers near the curves). In the limit mp — oo the current density tends to (j7)y; and it vanishes
on the Rindler horizon p = 0. On the right panel, the difference in the current densities for the FR
and Minkowski vacua (in units of em?) is plotted versus the length of the compact dimension. The
numbers near the curves are the values for mp.
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Figure 1: The current density as a function of the inverse acceleration and the length of compact
dimension.

As an application, the vacuum currents near the horizon of cylindrical black holes are investigated.
The corresponding exterior geometry is approximated by the Rindler-like metric considered above
with the lengths of the compact dimensions L; = 27ry, where ry is the radius of the event horizon.
At large distances from the horizon, the geometry of cylindrical black holes is approximated by a
locally AdS spacetime with a toroidally compact subspace. The lengths of the corresponding compact
dimensions are expressed in terms of the AdS curvature scale a as I; = 2ma. The vacuum currents in
the latter geometry have been investigated in [2].

In the second part of Chapter 1, the local properties of the FR vacuum for a massive Dirac field
Y(x) are investigated in a general number of spatial dimensions. As characteristics, the FC and the
VEV of the energy-momentum tensor are considered. The mode summation technique is employed
in combination with the point-splitting regularization procedure to evaluate those quantities. The line
element is the same as that for a scalar field, but now for all spatial dimensions —oo < 2! < oo,
[ =2,3,...,D. The dynamics of the field is described by the Dirac equation (i7*V, —m) = 0,
where V,, = 9, + I', and T',, is the spin connection. A fermionic field, realizing the irreducible
representation of the Clifford algebra {v#,7”} = 2¢**, is considered with N x N Dirac matrices,
where N = 2l(P+D/2] - Ag the first step, the results of [3] are generalized for the complete set of
fermionic normal modes in Rindler spacetime in the case of a massive field in (D + 1)-dimensional
spacetime. By using those modes, the following formula is obtained for the FC in the FR vacuum:

_ ANmP [ usinh u
(V) = —— 5=

'Ll/—
27r)¥ 0 u?+m2/4

f% (2mp coshu), 3)

where ¢ = 1)14°. From (3) it follows that the FC vanishes for a massless field. In the case of a massive
field, the condensate is negative and monotonically decreases with increasing proper acceleration 1/p.
It is exponentially suppressed by the factor e =" for large values of p and behaves like 1/p”~! for
small p (near the Rindler horizon).

The renormalized VEV of the energy-momentum tensor in the FR vacuum is diagonal. The corre-

sponding energy density and the vacuum stresses are expressed as (no summation over [ = 1,..., D)
ANmP+L [ usinhu
(ThHer = _(Q@—DT% /0 u m f%(Qmpcosh u) + Df%(Qmpcosh u)l,
2NmP+L [ usinhu
T} = —55 —_— 2 hu). 4
(T})rr (27r)% /0 uu2+ﬂ2/4f%(mpcos w) (4)



The vacuum effective pressures are determined by — (7} )rr and they are isotropic. Note that the latter
property generally does not take place for a scalar field. From (4) it follows that the energy density and
the effective pressures in the FR vacuum are negative. For a massless field, the general expressions
(4) are simplified to

2-PNp=DP-1 oo wPBp(w) 1 1
T VbR = —p5——— dw ———————=di 1=, =, 5
(T)rw I (%) /0 w o (—1)D 128 ( D D) (5)

where By = B; = 1 and

] L~ {D/2} ]
Bp(w) = 14 (—) , (6)
- [ (4
for D > 2. Here, { D/2} is the fractional part of D /2 and i, = D/2—1+{D/2}. Note that the energy
¢, measured by an observer with proper acceleration 1/p is expressed as €, = w/p. The respective
factor (™% + 1)_1 is interpreted as an indication of the thermal nature of inertial vacuum with
respect to a uniformly accelerating observer. The corresponding temperature (Unruh temperature)
is given by T' = Ty = 1/(27wp). An interesting point to be mentioned is that in an even number of
spatial dimensions, the thermal factor for the Dirac field is of bosonic type, (™ — 1)~1. Similar
features in the response of a uniformly accelerating Unruh-DeWitt detector interacting with the Dirac
field prepared in the Minkowski vacuum have been observed previously in the literature.

For a massive fermionic field and small accelerations corresponding to mp > 1, the energy

density and the stresses are exponentially suppressed: (T0)pr o (mp)7¥ e 2" and (T})rr ~
—2mp(T{)rr, | = 1,...,D. An interesting feature is seen in the asymptotic estimate is that
the absolute value of the energy density is much smaller than the absolute value of the pressure,
(T)rr| < [{(T1)Fr|. For classical sources 7y > |T}| and in the non-relativistic limit |77}| < T7.
In the opposite limit mp < 1, the leading term in the expansion over mp coincides with the VEV
for a massless field. In figure 2 the FC and the energy density in the FR vacuum are plotted as func-
tions of dimensionless combination mp for different values of the spatial dimension (numbers near
the curves). The qualitative behaviour for the vacuum effective pressure —(7!)gg is similar to that
for the energy density.
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Figure 2: The FC and the energy density versus the inverse proper acceleration.

Having the VEVs for a massless Dirac field in the FR vacuum, the corresponding VEVs are gener-
ated in the problems where the background geometry is conformally related to the Rindler spacetime.



As such geometries, a static spacetime with constant negative curvature spatial sections, the Milne
universe, dS spacetime foliated by negative curvature spatial sections and dS spacetime described in
static coordinates are considered.

In Chapter 2, the combined effects of the background geometry and topology on the VEV of the
energy-momentum tensor for the electromagnetic field in (D + 1)-dimensional locally dS spacetime
are studied. The non-trivial topology is generated due to a topological defect generalising a cos-
mic string in 4-dimensional spacetime. The corresponding geometry is described by the line element
ds2g = dt* — e2/%[dr? + r2d¢? + (dz)’], where z = (2%, ..., 2P), t, 2 € (—00,+0), 0 < r < o0,
and 0 < ¢ < ¢p. In the special case ¢y = 27 the geometry corresponds to the (D + 1)-dimensional
dS spacetime sourced by the cosmological constant A = D(D — 1)/(2a?). For ¢y < 27 and at the
points r > 0 the local characteristics coincide with those for dS spacetime. The defect core, given by
r = 0, presents a (D — 2)-dimensional spatial hypersurface. In terms of the conformal time coordinate
7 = —ae ", the metric tensor is given as g; = (av/7)* diag(1, —1, =12, —1, ..., —1). The complete
set of the normalized mode functions is found for the vector potential A,(x) of the electromagnetic
field. By employing those modes, the VEV of the energy-momentum tensor for the electromagnetic
field, (T}), is investigated, assuming that the field is prepared in the state which is the analogue of
the Bunch-Davies vacuum state in dS spacetime. The contribution in the energy-momentum tensor
induced by the presence of the defect (the topological part) is given by (1), = (T}) — (T})(45), where
(T")9) is the VEV of the energy-momentum tensor in dS spacetime in the absence of the cosmic
string. From the maximal symmetry of the Bunch-Davies state, it follows that (7)) = const - 6.

For the topological contribution in the VEVs of the nonzero components of the energy-momentum
tensor, the following expressions are obtained (no summation over 7):

la/2] A
: 20~ Pt o q * t@ (r/n, cosh 2)
Ty, = — E:t@) ) — L / d ’ 7
(T (2m)D/2+1 pu (r/m, ;) T sin(qr) 0 Zcosh(2qz) — cos(qm) |’ )
la/2]
8(D — 3)r q . > tOV (r /n, coshy)
Tl — E t(()l) A / d ! 8
o) (27T)D/2+1 aP+lp o /1, 53) ™ sin(qm) 0 ycosh(?qy) —cos(qm) |’ (8)

where n = |7, ¢ = 27 /¢y, s; = sin(jn/q) and the prime on the summation sign means that the term
J = q/2 (for even values of ¢) should be taken with additional coefficient 1/2. In (7), the notations

tO(z,y) = / duu @ ¢~ 2y’ Z K%_l(u)fl(i)(x,y,u), )
0 1=1,2
#(01) x, = 2 duu? (1 — uylz? Ko . (u eu—2e%y*u 10
Y Y Yy 1
0 2
are introduced with the functions

fl(i) (x,y,u) = [4bl(i)ux2y2 — 2(bl(i) + dl(i))lWZ — (D - 2)al(i) + 2bl(i)) y* + el(i)v i 71,2,

fl(i)(x,y,u) = 2(bl(i) — all(i))u:EQy2 + 6l(i), 1=1,2. (1D

The numerical coefficients al(i), bl(i), cl(i), dl(i), and el(i) are completely determined by the spatial dimen-
sion D. The off-diagonal component (73 ), corresponds to the energy flux along the radial direction.
For this component one has (Tj ), < 0 which means that the flux is directed towards the cosmic string.

The topological part of the VEV depends on 1 and r in the form of the ratio /5. This property is a
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consequence of the maximal symmetry of dS spacetime. Considering that «ar /7 is the proper distance
from the string, it is seen that /7 is the proper distance, measured in units of the dS curvature scale
a.

For odd values of D, the topological contribution is expressed in terms of elementary functions.
In particular, for D = 3,5 one gets (no summation over 7)

; Aey(q)
Ti ——— L (THy =0, AD =AW =A® =1 A® = _3 D=3 12
< z>t 87T2(Oé7"/77)4’ < 0>t ) ) ) ) ( )
(Ti), = [B(i) + (T/U)QO(i)} ca(q) + DYes(q) (TH, = — ca(q) D=5 (13)
i 1673 (aur /1)® PO 8ab (/) ’
where BO = B0 = 2 BM = B® — o CcO = _c® =1, Cc® =5 DO = p) = _9
D® =10, and
(q) q2_1(2+11) (q) q2_1(24+232+191) (14)
C = C = —— .
4\q 90 q » Ce\d 1890 q q

At small proper distances compared to the curvature radius of the background spacetime, one has
r/n < 1, and the leading terms in the asymptotic expansions of the diagonal components near the
string coincide with the corresponding expressions for the Minkowski bulk with the distance from the
string replaced by the proper distance in the dS bulk. In that region, (T7); o 1/(ar/n)P*+! with the
relations (7)), ~ (T{)i, | = 3,..., D, and (T3); ~ —D(T});. The energy density near the cosmic
string is negative in spatial dimensions D = 3, 4. Near the cosmic string, the radial stress is negative,
and the azimuthal stress is positive, (T}); < 0 and (73); > 0. For the off-diagonal component one
has (T3); o< (ar/n)~P /a for r/n < 1. At large distances from the cosmic string, one has r/n > 1
and the leading terms in the corresponding asymptotic expansions are given by (no summation over
i)
o o P02 -Dtes(a) oy (D =3)0(D/2 = Desl) s

(T7)e ~ 327 D/2H 1o D+ (1 J) & (To)w = — QD/2+1D+1 (7"/77)5 ’ (15)
where I'(z) is the gamma function and the numerical coefficients t(()i) are completely determined by
the spatial dimension D. The exception is the energy density for the case D = 4 with the asymptotic
(T0)y ~ —3c6(q) In(r/n)/[873a’(r/n)8]. At large distances from the cosmic string, the topological
contribution to the energy density is negative for D = 3,4 and positive for D > 4. The stresses
(T}, with @ = 1,3, ..., D, are negative for 3 < D < 6 and positive for D > 6. The stress (T5);
is positive for D > 3 and the energy flux is negative. Notably, the topological contributions in the
diagonal components decay at large distances as the inverse fourth power of the proper distance from
the cosmic string in all spatial dimensions D > 3. The exception is the energy density in 4-dimensional
space. This behaviour is in contrast to the geometry of a defect in the Minkowski bulk where the VEV
decays like 1 /7P,

Figure 3 displays the dependence of the diagonal components of the topological contributions in
the VEV of the energy-momentum tensor, (77); (in units of 1/a”*1), on the ratio r /n (proper distance
from the cosmic string in units of the dS curvature radius «). The numbers near the curves correspond
to the value of the index 7, and the left and right panels are plotted for D = 5 and D = 6, respectively.
For For the planar angle deficit, we have taken the value corresponding to ¢ = 1.5. The dashed curves
on both panels present the energy flux. For both cases, D = 5, 6, the energy density is positive. For
D = 3,4, the corresponding energy density is negative. In general, depending on the values of D and
g, the energy density can be either positive or negative. For the values of the parameters corresponding
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Figure 3: The radial dependence of the topological contributions in the vacuum energy-momentum
tensor.

to figure 3 the radial and azimuthal stresses are monotonic functions of /7, whereas the stresses (7} )1,
1=1,3,..., D, are positive near the cosmic string and negative at large distances.

Chapter 3 considers a scalar field ¢(x) on the background of a (D+-1)-dimensional AdS spacetime
with the curvature radius o. The corresponding line element is given by ds3 s = (o/2)” [dt? —
(d')? — dx? — dz?], where x = (22,...,2P71), 2 € (—o0,+00) and 0 < z < oo. The AdS
boundary and horizon are presented by the hypersurfaces z = 0 and z = oo, respectively. The
Ricci scalar and the cosmological constant are expressed by the relations R = —D(D + 1)/a? and
A = —D(D —1)/(2a?). The operator of the scalar field with the curvature coupling constant £ obeys
the equation (¢"*V,;V + m? + {R) (x) = 0. We are interested in the effects of two branes located
at x' = a; and ' = a, on the local properties of vacuum state. It is assumed that on the brane at
z' = a;, j = 1,2, the field obeys Robin boundary condition (A; 4+ B;n’V;)¢(x) = 0, where n’ is the
normal to the brane. In the region between the branes, a; < z' < ay, one has n}; = (=1)'"'4}z/a.
The special case with B;/A; = a3;/z is considered, where /3;, j = 1, 2, are constants. The complete
set of mode functions, obeying the boundary conditions on the branes, are found. By using those
modes, the positive frequency Wightman function is evaluated. The local VEVs are obtained in the
coincidence limit of the arguments of that function and its derivatives.

In the region between the branes, the VEV of the field squared is expressed as

1-D 00 2|zt —ajlz/z ..
2 2 (ﬁa) / D+2v—1 1pD/2 2+ Zj:172 € TG ($/Z>

= v d F 16

<()0 > <()0 >0+ 9D+2v o L X v (I) CI(I/Z)CQ(x/Z>€2a$/z_1 ’ ( )

where v = \/D?/4 — D(D + 1) + m2a?, a = ay — ay, ¢;(A) = (B;A —1)/(B;A + 1), and

Fr(u) = F(v+ gipt v+ 5,1+ 20 —u?) (17)
v P(p+v+ 51 +v) ’

with | Fy(a; b, ¢; z) being the hypergeometric function. In (16), ((p?), is the renormalized VEV in AdS
spacetime when the branes are absent. Because of the maximal symmetry of AdS geometry, the part
(p?)o does not depend on the spacetime point.

The VEVs of the nonzero components of the energy-momentum tensor are written in the form (no
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summation over )

D
) ) —1-D 00 E. D+21/FV5
@ = - [ dmx{ —
0

2D+21/7TT Ccy x/Z)CQ(I/Z)QZGx/Z _ 1

2+ Zj:l,Q €2|$1_ajlm/zcj (z/2)
c1(x/z)eo(w)2)e20w/z — 1

a-1-D I p2lat—ajle/z e (4] 5
— [ wZet) (/)

2D+2Vﬂ- 2 Cl $/Z>CQ($/Z)€2ax/Z -1
X Kg — Z) 20, + g} DY (), (19)
where E; = 2 (1 —4) fori =0,2,...,D, By = =2, 4, =0, 4;=1/2fori=0,2,...,D — 1, and

Ap = (1—D)/2. In the expressions for the diagonal components, B; are the second-order differential
operators with respect to . For example,

[AixD“”FV%H( )+ B RS (o )]} (18)

B = (6—1/4)3*+ (D —1/4) — (D —2) €] 2710, — DEx~2. (20)

In (18), the part (T7), corresponds to the vacuum energy-momentum tensor in the brane-free AdS
spacetime. From the maximal symmetry of the AdS geometry one has (T), = const - §F. The
components (77) and (T}), i = 2,...,D — 1, determining the energy density and stresses along
the directions parallel to the branes (except the component : = D), are equal. Of course, that is
a consequence of the problem’s symmetry. The products a”~1(x?) and o?*(TF) depend on the
quantities having dimension of length (z', a;, /3;) and on the coordinate z through the ratios z'/z,
aj/z, Bj/z. Those ratios are the proper values of the quantities measured by an observer with fixed z
in units of the curvature radius . This feature is a consequence of the AdS maximal symmetry.

In the limit @ — oo, with a fixed value of the coordinate y = «aln(z/a), from (16) and (18)
the corresponding VEVs are obtained in the region between two Robin plates in the background of
Minkowski spacetime with the line element ds?, = dt2 — (dz')” — dx® — dz2. For a massless field,
they are reduced to the results derived in [4]. In the Minkowskian limit, the off-diagonal component
(T},) tends to zero like 1/a. Another special case corresponds to a conformally coupled massless field
with¢ = &p = (D —1)/(4D). In this case, the problem on the AdS bulk is conformally related to the
problem in the Minkowski spacetime with the line element ds?;, involving two parallel Robin plates
at x' = a, and 2' = a5 intersected by the plate z = 0 with the Dirichlet boundary condition. The
latter plate is the conformal image of the AdS boundary. The VEVs are connected by simple relations
(%) = (#M)o+ (/)" () oy and (T}) = (Ti)o + (2/)” " (T{) > where (0%) ) and (T}) o)
are the VEVs in the Minkowskian problem.

Near the brane at ' = a;, |#* — a;| < z, the VEVs are dominated by the last terms in (16) and
(18). Assuming additionally |z' — a;| < |3;| (non-Dirichlet boundary conditions), the leading terms
in the expansions over the distance from the brane read

(L-D){T}) _ 2D -9 (%)

Oﬁ—MﬁfN#’@Mﬂ—wﬁ>

b (a ]z’ - a J2) 7 (1) ~ @

For the off-diagonal component one gets (T}) = (z! — a;) (T3)/z. For the Dirichlet boundary con-

dition, the corresponding asymptotics differ from (21) by the sign of the right-hand sides. The leading
terms (21) coincide with those for plates in Minkowski bulk, with the distance from the plate replaced
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Figure 4: The vacuum energy densities for
D = 4 minimally coupled scalar fields in-
duced by the branes in the region 0 < z'/z <
5.

o b

by the proper distance in AdS bulk. In the region under consideration, the dominant contribution to the
VEVs comes from the vacuum fluctuations with small wavelengths, and the influence of the gravita-
tional field on those modes is weak. For points near the AdS boundary and not too close to the branes,
corresponding to z < |z — a;|, j = 1, 2, the brane-induced parts (¢©?) — (¢?)o and (T7) — (T}), tend
to zero like 272, The off-diagonal component behaves as (T},) oc 2021,

Figure 4 presents the brane-induced energy density for minimally coupled scalar fields in the region
between the branes versus the proper distance from the brane (in units of ). The graphs are plotted for
a; = 0,ay/z = 5, ma = 0.5 and for the same Robin boundary conditions on the branes (3; = (32). The
numbers near the graphs correspond to the values of the ratio 3; /2. We have also plotted the graphs
for Dirichlet and Neumann boundary conditions (5; = 0 and 3; = oo, respectively). The vacuum
energy density near the branes is positive for a minimally coupled field and non-Dirichlet boundary
conditions. For the Dirichlet boundary condition, the energy density is negative. The behaviour of
the energy density near the centre with respect to the branes depends on the Robin coefficients. For
B;/z < 0 and sufficiently close to zero, the brane-induced energy density is negative near the centre.

With the increasing value of |5;|/z, started from a certain critical value ﬁj(-c), that depends on a/z,
it becomes positive everywhere in the region between the branes. For the values of the parameters
corresponding to Figure 4, the critical value is given by ﬁ](.c) /z ~ —0.69. The critical value is an
increasing function of a/z.

The Casimir forces acting on the branes have two components. The first one corresponds to the
normal force, which is determined by the component (T}') of the energy-momentum tensor. The
vacuum pressure on the brane at ! = a; is given by the expression

_2 + 2+C](g;/z) + 1/0](3:/Z)] Bl D+2yF§
2D+2u7rT ci(w/z)ea(z/2)e?ew/ — 1

P, =

j (z). (22)
The normal force is attractive for P; < 0 and repulsive for ; > 0. Unlike the problem in the
Minkowskian bulk, the forces for Dirichlet and Neumann boundary conditions (¢;(u) = —1 and
cj(u) = 1, respectively) are different. Another difference is that the forces acting on separate branes
differ if the coefficients in the Robin boundary conditions on them are different. The normal forces
can be attractive or repulsive depending on the boundary conditions and the separation between the
branes. The effects of background curvature are weak at small separations, and the force is well ap-
proximated by the corresponding result for the Minkowski bulk. They are repulsive for the Dirichlet
boundary condition on one brane and non-Dirichlet condition on the other and attractive in the remain-
ing cases. The influence of gravity is essential for proper separations larger than the AdS curvature

14



[ 1.01 B
o} =TT 7
-1 B g 0.5 B
R
Q I +
N r Q
o =2 03 4 N
S s
[ > < 0.0
L 0.5 ',’ “““ L
-3 / e i
/.
N 4
4 70 1.5 20 25 30 35 40 ] _0.5¢ |
1.2 14 16 18 20 0.5 1.0 1.5 2.0
alz alz

Figure 5: The normal and shear forces per unit surface of the brane 2! = a; versus the interbrane
separation.

radius, a > z. For the brane with Neumann boundary condition, the Casimir force on that brane
decays at large separations like (2/a)?+? regardless of the boundary condition on the second brane.
For non-Neumann boundary conditions on the brane at 2* = a; and for a > |f;] the corresponding
force behaves as (z/a)”™2"*2 and the suppression is stronger. The decay of the forces at large sep-
arations obeys a power-law for both cases of massless and massive fields. For massive fields, these
results contrast the exponential decay in the Minkowski bulk. The normal Casimir forces can be at-
tractive or repulsive at large distances depending on the boundary conditions. The sign of the forces
is determined by the factor 4v B, 37 /2* 4 1, where B, = (D + 2v + 1) & — D/4 — v/2. This factor
is positive near the horizon and is negative near the AdS boundary if B, < 0. This shows that the
vacuum pressure changes the sign as a function of z.

A qualitatively different feature of the AdS bulk problem is the vacuum shear force on the branes
acting along the z-direction. It is determined by the off-diagonal component (7}°), evaluated at the
location of the brane, and is decomposed into self-action and interaction contributions. The shear force
per unit surface of the brane at 2 = z; induced by the second brane (the interaction contribution), is
expressed as

o = 20 [T gl Lot (- 1) o0+ e > riw. @

_2D+2V7T 5 0 Cl(fL’/Z)CQ(ZE/Z)Gzaz/Z _

This part acting on the brane at 2* = a; vanishes for Dirichlet and Neumann boundary conditions
on that brane regardless of boundary conditions on the second brane. The shear force is directed
toward the horizon for f;mt) > 0 and toward the AdS boundary for fj(mt) < 0. At small proper

separations compared with the curvature radius, a/z < 1, and for £ # £p one has f](int) x (z/a)”. At
small separations, the shear component of the force has opposite signs for Dirichlet and non-Dirichlet
boundary conditions on the second brane. At large proper separations, a/z > 1, the interaction force
behaves as f](int) x (z/a)”*t** It has opposite signs for Neumann and non-Neumann boundary
conditions on the second brane. For conformally and minimally coupled fields and for 8; < 0, at
large separations between the branes the shear force acting on the brane 2! = a; is directed toward
the AdS horizon for Neumann boundary condition on the second brane and toward the AdS boundary
for non-Neumann conditions.

In figure 5, the normal and shear forces are presented versus the proper separation between the
branes, in units of the AdS curvature radius, for D = 4 minimally coupled scalar field. The same
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boundary conditions are imposed on the branes, and the numbers near the curves are the values for
p1/z = Pa2/z. The graphs are plotted for ma = 0.5. The dashed and dotted curves on the left panel
correspond to Dirichlet’s and Neumann’s boundary conditions, respectively. The graphs on that panel
show that the forces attractive at small separations may become repulsive for larger distances. The
shear force is directed toward the horizon at small separations between the branes and toward the AdS
boundary at large separations.

CONCLUSIONS

1. Expressions are derived for the Hadamard function and currents in the Fulling-Rindler for a
charged scalar field in Rindler spacetime with a part of spatial dimensions compactified to a
torus. The charge and current densities along uncompact dimensions vanish. The current den-
sity along compact dimensions is a periodic function of the magnetic flux enclosed by those
dimensions and vanishes on the Rindler horizon. For small accelerations of the Rindler ob-
server, the difference in the current densities for the Fulling-Rindler and Minkowski vacua is
exponentially small.

2. Properties of the fermionic Fulling-Rindler vacuum for a massive Dirac field are investigated
in a general number of spatial dimensions. The fermion condensate vanishes for a massless
field and is negative for non-zero mass. Unlike the case of scalar fields, the fermionic vacuum
stresses are isotropic for the general case of massive fields. The vacuum energy density and the
pressures are negative. The corresponding spectral distributions exhibit thermal properties with
the standard Unruh temperature for a massless field. However, the density-of-states factor is not
Planckian for a general number of spatial dimensions. The thermal distribution is of the Bose-
Einstein type in an even number of spatial dimensions. In an even number of space dimensions,
the fermion condensate and the mean energy-momentum tensor coincide for the fields, realizing
two inequivalent irreducible representations of the Clifford algebra.

3. Effects of a generalized cosmic string type defect on the vacuum expectation value of the energy-
momentum tensor are investigated for the electromagnetic field in locally dS spacetime for a
general number of spatial dimensions D. The topological contributions are explicitly extracted
in the diagonal and off-diagonal components for the Bunch-Davies vacuum state. The latter
describes the presence of radially directed energy flux in the vacuum state. It vanishes for
D = 3 and is directed towards the cosmic string for D > 4. The topological contributions in
the vacuum stresses are anisotropic and, unlike the geometry of a cosmic string in the Minkowski
spacetime, for D > 3, the stresses along the directions parallel to the string core differ from the
energy density. The corresponding expectation values can be positive or negative depending on
the planar angle deficit and the distance from the cosmic string.

4. Near the cosmic string, the effect of the gravitational field on the diagonal components of the
topological part is weak, and the leading terms in the expansions of the diagonal components
for the energy-momentum tensor coincide with the expectation values for a cosmic string in the
background of Minkowski spacetime. The spacetime curvature modifies the topological terms’
behaviour at proper distances from the cosmic string larger than the dS curvature radius. In
that region, the topological contributions in the diagonal components of the energy-momentum
tensor decay in inverse proportion to the fourth power of the proper distance, and the energy flux
density behaves as the inverse-fifth power for all values of the spatial dimension. The exception
is the energy density in the special case D = 4. The energy flux is absent for a cosmic string in
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the Minkowski bulk, and the diagonal components are proportional to the (D + 1)th power of
the inverse distance.

. For a massive scalar field with general curvature coupling, the Wightman function is evaluated
in the geometry of two parallel branes perpendicular to the AdS boundary. The vacuum energy-
momentum tensor, in addition to the diagonal components, has a non-zero off-diagonal stress.
Depending on the boundary conditions and also on the distance from the branes, the vacuum
energy density can be either positive or negative. The Casimir forces acting on the branes have
two components. The first corresponds to the standard normal force, and the second is parallel
to the branes and presents the vacuum shear force.

. Unlike the problem of parallel plates in the Minkowski bulk, the normal Casimir forces acting on
separate branes differ if the boundary conditions on the branes are different. They can be either
repulsive or attractive. Similarly, depending on the coefficients in the boundary conditions, the
shear force is directed toward or from the AdS boundary. The separate components may also
change their signs as functions of the interbrane separation. At large proper separations between
the branes, compared to the AdS curvature radius, both of the components of the Casimir forces
exhibit a power-law decay. For a massive scalar field, this behaviour is in contrast to that for
the Minkowski bulk, where the decrease is exponential.
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uUeNeush,

Uwmbuwununipyniunid hmwgnunywsd tu pwunwyhu yuyninidh hwwnnipyniuutinp ny
hutinghw) hwdwuwnpgbtinnid, ng-nphy hw mnwninghwyny ntt Uhnntinh mwpwonipgjniunid
nt wunh-nti Uhnwntiph mwpwdnipyniund, tpp wnju Gu bwlb vwhdwuubipn: Npubtu Ju-
Jninwdh |nuy punipwgptin, nhnwpyywd Gu nuymh punwlniuni, hnuwuph jumnnipyuu
b Lubipghw-hdwyniyuh ptuqnph dhohuutipp: dwlinimdwihut dhohuubipmd pugwhwjn
Jtpyny wnwuaduwugywd tu mnuyninghwjuw n vwhdwuutipny dwjuoywo dwubipp b ht-
nwgnunywd E npuug Juppp wuwpwdtnptiph wpdtputiph uwhdwuwyhu mhpnyputipnud:
Lutupywo tu Jhpunmpniuutipp mhbgtpughunnipyniund, Ywnmgw-Ljuyuh b ppuu
wpfuwnphutipnh dnntyubipnud:

I Upnwoyty tu  dnyhug-(thungitiph  Juynmdwht  yhtwynd gwugnn hgpw-
ynpywo uupyup npuowmh Swnwdwph $niuyghwh b hnuwuph junnipjuwu wpnw-
huwynnipymuutinp mnpnhnu) Yndyuwn Gupwnwpwonipjudp (bhuniph mwpw-
dwdwdwuwlnmd: Lhgph Junnipymup b hnuwuph pununphsutippn ns-Yndyujn
swthtiph  tpyuwyupny gpnyuunid Bu: Undyuwjn  yuthh  tpluwjupny  hnuwuph
fJunnmpunniup Wyuppipuuu $miuyghw £ npuuny wgupthwlywd dwguhuwmyuu
hnuphg b qpnjuund £ (Yhuntph hnphgnuh ypw: $npp wpugqugnidutinh nbwpnid
bnyhug-(thungiph b Uhulnduym Juynmmdubipmd hnuwuph Junnipiniuutinh
wnwpplinnipyniup Lpuwynubughw) dwpnid E:

2. RQuuqgywodtn ‘thpujjuu nuymh hwdwp hmwgnunyty tu dapdhnuwghu dnijhug-
(bhunptiph Juyninmudh  hwnnmpymuutpp  mwpwénipjuu  swhnnujuuniyejuu
punhwunip nbypmd: dbtpdhnuwhu Ynunbvuwmp  qpojuunid | wuquiugywo
nuowuh hwdwp b puguuwyuwu L quugyuotn nuonh nbypnid: b mwppbpnipiniu
ufuyup nupwh nhiwph, ppuhnuuwht uymnh jupduompymiutpp hgnnpnuy
tu quugywotin nuownh punhwunip pbwyph hwdwp: dwinmdwhu Butinpghwyh
fJunnmpniup b Gupnudutipp pwguuwljuwu Gu: Lpnjuluu quuquony nuwownh
ntiypmd  hwdwwyuwnwujuwy  uybjonpup pwplumdutipp sbpdught punyph tu'
unwunupn Mupnih oipdwumhtwuny: Uwuyu, yhtwlutiph junnipjuup hw-
dwywwnwufuwunn  gnpowlihgp nmwpwowluwu suthnnuiuwunipjuu punhwunip
nbypnd Nuiujut ¢E: Rbpduwghtu pupfunudp Anqb-Ujuppwjuh mhwh £ qnyq pyny
nwpwowluu suthnnuiuunpnmuubpnd: 2nyq pyYny nmwupwdwjuu swthnnuljw-
unipyniuutipnmid dipdhnuwghu Ynunbuuwwnp b Eutipghw-hdwnyuh ptugnph dhohup
hwdpuljumd tu L1hdnpnh hwupwhw)yh ny hwdwnpdtp sptinynn ubpuyjuygnidutinh
hpwgunn nuowtinh hwdwn:

3. Lbmwgnuylyy £ D + 1 guhwuh njuwy nt Uhnnbtiph mwpuwowdudwuwynid
punhwupwgywd Ynudhuluwu juph whwyh wpwnh wgpbgnipymup Lajunpw-
dwquhuwjuu nuownh Lutipghw-hdwnyuh phugnph Julinmdwhu dhohh yJpuw:
fuuy-Fayhuh Juynnmdwghtt yhtwyh hwdwp pugwhuyn wnbupng wuowmywd
tu wmnwninghwluwu ubtpppnudutipp husybu  wulpmuwgqowhu, wuwbu L] ny-
wulnuwgowhu pwnunphsubipnd: Ybpohiu ujupugpnd § Juynndwghi yp-
twynud Lutipghuwyh hnup junwynuyht ninnmpyudp: Uju qpnyuunid £ D = 3
ntypnd, b ninnyuwo L ntyh Ynudhjuyuu jupp D > 4 phwyptpmd: Snwnjn-
ghwuwu utipppmdutinp Juynindughu jupjuwonipynivutpnid wuhgqnupny Gu b, h
nwppbipnpiniu Uhunuynt mwpuswdwdwuwynid jnudhuuw juph Gpipusw-
thnipjuy, tpp D > 3 Ynudhluwu juph wnwugphu qniquhtin ninnnipjmuubtnny
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Jjupyuwonipyniuubinp mwpptip Gu Futipnghwjh jumnniejniuhg: Ywjujwod hwpe wuljuu
ntbhghinhg b juphg mubtigwd htinwynpnipjniuhg hwdwwwnmwujuwu dhohuutinp
Jupnn Gu jhub] husybiu ppujuu, wjuybu B puguuwui:

. Unudhjuuwu juphut Unun Ybhwnbpnd gpughwmwughnt quowh  wgnbignipiniup
Lutinghw-hdwyniyuh phugnph wulpmuwgoéwht pununphsutipmd nnwninghwyny
yuwydwuwynpywd utipnpmdubiph ypw pnyp L b hwdwywnmwujuwu ytpnionipju
gljuuynp wunwdutipp hwdpuljund Gu Uhuynyjuynt mupwéwdwdwuwynid Ynudh-
Juiwu juph hwdwp Juinndwghu dhohuutiph htim: Swpwowdwdwuwyh Yn-
nnipiniup bwytiu thnjunmd E mnwninghwwu ubtpppnudutinh yuppp Ynudhljuywu
jwuphg nti Uhnwnbtiph Ynpnipjutu pwnwynhg dtd ubithwjwu htinwdnpnipgjmuutinh
Ypw: Wn wmhpnypnd Eutipghw-hdwniup phugnph wuniiwgowhu punwnphsut-
nnd mnwninghwwu utpppmdutinp mwpwowlwu pninp suthnnujuwunipyniuub-
nnid ujugnud Gu utithwljuu htinwynpnipjwu snppnpn wunmhdwuhu hwjunupa hw-
Utifwwnwywi, huly Butipghugh hnupp' hhugbipnpn wunh@wuht hwjwnwpé hwdt-
dwnwu: fugunnipintu L juqunind Futipghwh junmpymiup D = 4 nhwypnud:
Uhuynyulnt mwpwowdwdwuwynid Ynudhjuwu juph hwdwp Luipghwjh hnupp
pugwuynud £, hul] wulniuwgowhu pununphsutinn hwjunwpa hwdbtdwmwuywu
tu htimwynpnipjuu (D + 1)-pnp wunhéwuhu:

. Unwgyly £ dwypdwuh $niughuyh wpmwhwynnipiniup Ynpnipjutu htim punhw-
unip juwh yupudtinpny quugywstin ujuyjup nuowh hwdwp wunh-nt Uhnnb-
nh uwhdwuht ninquwhwywg tpynt gniquhtn ppwiubiph tppuwswthnipyniunmd: Yw-
Unimidwyhu Eutipghw-hdwniyuh ptugnpp pugh wulnuwgowht pununphsutiphg
nuh uwb qpnjhg wmwppbp ny wulpmuwgowhu pwnunphy: Ywjujwd bgpuyhu
wwjdwiubtphg b ppwuttph dhol htmwynpmipimuhg” Juymnidwiht Futipnghwyh
[Junnipynmup Jupnn £ jhuly husybiu npuub, wjuybu £ ppguuwluu: fpuuutiph
Yypw wgnnn Ywghdhph mdbpp mubtiu Gpym punqunphsutin: Unwohup hwdwuww-
nwujuwund L unwunwpwu unpdw) nidhu, huy tpipnpnp gniguhtin £ ppuuubiphu b
utinuyugunid £ Juynimdwhi gnputhnn nid:

. b wmwpptpnipymu Uhuynjulint mwpwdwdwdwuwlnd qniquhtin - phptinutph
[utinph, wnwuahu ppwiitiph Ypw wgnnn Ywghuhph npnuihwjwg mdtpp wwppbp
by, bl mwpptp tu npwug ypw npynn bgpuyht wuydwuutipp: “bpwup Jupnn tu
1hul hwswtiu agnnuju, wjuytu b Juunnujuu: Ldwiwuytu, Jujujwo tqpu-
Jhu wuydwuipnud gnpowljhgutiphg, pnpuwthnn mdp Yupnn b nmnty hugutiu niwh
wunh-ntt Uhnntiph uwhdwup, wyjuytu £ hnpgnuh ninnnipyjudp: Ywjuwd dhoppw-
uwyhu htmwynpnipiniuthg wnwudhu pununphsutinp Junpnn Gu thnfuty hptug vpwup:
Uuwnh-nt Uhnwntinh Ynpnipjuu punwynhg ko dhgppwiwyhu htinwynpmigyniuutinh
Ypw bwughuhph mdh tpynmt punuinphsutinu £ ujugnid Gu wunmhdwuwgh optupny:
Luiugywotin ujuyjunp puowmh hwdwp udwu Juppp mwppbp L Uhunguynt mwupw-
dwdwdwuwynid nttyphg, npunbtn ujwugndp Epuynubughwy optiupny E:
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KOTAHKAH BAPIA3AP

BAKYYMHBIE KBAHTOBBIE D®®PEKTbBI B HEMHEPLHHUAJBHBIX CUCTEMAX 1
I'PABUTAIJMOHHBIX ITOJIAX

B nucceprauuu vccnenoBaHbl CBONCTBA KBAHTOBOIO BaKyyMa B HEMHEPLIUAIbHBIX CUCTEMAX OT-
cueta, B mpocTpancTBax jae Currepa (dS) ¢ HeTpuBHANBHOI TOMOJIOTHEN U B IPOCTPAHCTBE aHTH-/IE
Currepa (AdS) npu Hanuuwu rpaHull. B kadyecTBe TOKaIbHBIX XapaKTEPUCTUK BAKYYMHOTO COCTOSTHUS
paccMOTpPEHbI BaKyyMHbIE CpeHHE KBaJpaTa IoJisl, IJIOTHOCTU TOKa U TEH30pa YHEPrUHU-UMITYJIbCa.
SIBHO BbIAEIEHBI BKJIAJbl B BAKYYMHBIX CPEIHUX, NHAYLIUPOBAHHBIE TOIIOJIOTUEN U TPAaHULIAMHU U UC-
CJIEZIOBAHO UX MOBEJICHHUE B Pa3IMYHBIX NPEICIIbHBIX 00JacTAX 3HaYeHN mapameTpoB. O6cyxaaroTcs
NPUIOKEHHS B KOCMoJorud, B Mozeisix Kamyupl-Kneiina u 6pan Mupos.

1. ITomyuensl BeIpaskeHHs Ui GYHKLIMHU Alamapa v TOKOB B Bakyyme Dymmunra-Punepa s 3a-
PSYKEHHOTO CKAJIIPHOTO I10JISI B IPOCTPAHCTBE-BpeMEHU Punepa npu HalIM4ny TOpOUIAIIbHO
KOMITaKTU(ULIUPOBAHHBIX MPOCTPAHCTBEHHBIX M3MepeHui. [loka3aHo 4To MIoTHOCTH 3apsia
Y TOKa BJIOJIb HEKOMIIAKTHBIX U3MEPEHUI PaBHBI HYJIIO, & INIOTHOCTh TOKA BJIOJIb KOMITAKTHBIX
U3MEpPEHHH SBIISETCS NePUOANYECKOI (PYHKIMEH MarHUTHOTO MOTOKA, MPOHU3BIBAIOLIETO 3TH
U3MEPEHHUs], U CTPEMHUTCS K HYJII0 Ha ropuzoHTe Punmepa. IIpu ManbIX yCKOPEHUSAX pa3HU-
[1a IUIOTHOCTEN TOKa I BakyyMoB DymnuHra-Punanepa 1 MUHKOBCKOTO 9KCIIOHEHIIMAIBHO
Maja.

2. UccnenoBanbl cBOWCTBa (hepMHOHHOTO Bakyyma DymmHra-Punasiepa Juist MAaCCMBHOTO OIS
Jlupaka npu MpOU3BOJIBHOM YHCIIE MPOCTPAHCTBEHHBIX n3Mepenuil. [TokazaHo uto hepmuon-
HBII KOHJIEHCAT PaBeH HYJIIO Ul 6€3MaccOBOIO MO U OTPULIATENIEH IIPU HEHYIEBOM Macce. B
OTJIMYHUE OT Clyyasi CKaJIIpHBIX MoJel, pepMUOHHBIE BaKyyMHbIE HATSXKEHHsI U30TPOIHBI IS
o01ero ciyyast MaCCUBHBIX Iojiei. [I1oTHOCTh SHeprun Bakyyma U AaBJI€HUs OTPHULIATEIbHBI.
Jlnst 6e3MaccoBOro OIS COOTBETCTBYIOIIUE CIEKTPaAJIbHBIE paclpe/iesIeHUs] UMEIOT TEIIOBON
XapakTep co CTaHIapTHOU TeMiiepaTypoil YHpy. OnHako (akTop MIOTHOCTH COCTOSIHUN HE sIB-
JSIeTCsl TUIAHKOBCKUM JJIsi OOIIEro cilydas Yucliia MPOCTPaHCTBEHHbIX M3MepeHuil. TermoBoe
pactpeneneHue umeeT boze-DUHIITEHHOBCKUI TUI B YETHOM YHCJIE IPOCTPAHCTBEHHBIX M3-
MepeHuid. [Ipy 4eTHOM KonM4yecTBe MPOCTPAHCTBEHHBIX U3MEPEHUH (PepMUOHHBIN KOHJEHCAT
U CpellHee TEH30pa PHEPIHMU-UMITYJIbCAa COBMANAIOT JUIS MOJIEH, pEaJIn3yIOLINX J1Ba HEOKBUBA-
JICHTHBIX HEMPUBOJAMMBIX TpesacTaBieHus anreopsl Kimuddopaa.

3. HccnenoBano BnusiHKE AedeKTa TUIIA 0000IIIEHHOW KOCMUYECKOM CTPYHBI Ha BAKYYMHOE Cpe/l-
HEe TEH30pa YHEPTUU-UMITYJIbCA JUISl JIEKTPOMArHUTHOTO TOJISl B JIOKAJTBHOM MPOCTPAHCTBE-
Bpemenu dS 11 001ero uncia NpocTpaHCTBEHHBIX M3MepeHuid D. [l BaKyyMHOTO COCTO-
SAHUA BaH‘Ia-I[BBI/ICEl SIBHO BBIJACJICHBI TOIMOJOIMYCCKUE BKJIaJbl KaK B AHArOHaJIbHBIX, TaK KU
B HECAWMAroHaJIbHbBIX KOMIIOHCHTAax. HOCJ’ICI[HCC OIMUCBIBACT HAJIMYINEC B BAKYYMHOM COCTOAHUU
paaruaJIbHO HAIMPaBJICHHOI'O ITOTOKAa SHECPIUH. Tononornueckue BKJIaZbl B BAKYYMHBIC HATAXKC-
HUSI aHU30TPOITHBI M, B OTJIMYHE OT TEOMETPHH KOCMHUECKON CTPYHBI B IPOCTPAHCTBE-BPEMEHU
MunkoBckoro, mpu DD > 3 HaTsSKEeHUS BIOJIb HANPaBJICHUH, MapaJIeNbHBIX OCH CTPYHBI, OT-
JIMYAr0TCA OT IJIOTHOCTHU SHCPTUH. B 3aBucuMocTH oT I[e(l)I/II_II/ITa IMJIOCKOI'O yIiia U paCCTOSAHUA
OT KOCMHUYECKOHU CTPYHBI COOTBETCTBYIOIIUC CPECAHUC 3HAYCHUSA MOTYT OBITH KaK IIOJI0KUTEIIE-
HBIMH, TaK 1 OTPULIATCIIbHBIMU.

4. BOmu3n KOCMHYECKOH CTPYHBI BJIMSAHNUC I'PABUTALIUOHHOIO ITOJIA HA AWArOHAJIbHBIC KOMIIOHCH-
TBI TOIOJIOTMYECKOH yacTu citadboe. I maBHBIC YICHEI B PA3IOKCHUAX AUArOHAJIbHBIX KOMIIOHCHT
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TEH30pa SHEPTUU-UMILYJIbCA COBIALAOT CO 3HAYECHUSAMU CPEIHUX I KOCMUYECKOM CTPYHBI Ha
(doHe npocTpaHcTBa-BpeMeHH MUHKOBCKOro. KpuBu3Ha pOCTPaHCTBA-BPEMEHU CYLECTBEH-
HO BJIUSICT Ha MTOBEJICHHE TOMOJIIOTHYECKHUX YWIEHOB Ha COOCTBEHHBIX PACCTOSHUSIX OT KOCMUYe-
CKOH CTpYHBI, 00JIbIINX, YeM paanyc KpuBu3Hbl dS. B 31011 0651acTH TOnonornueckre BKIaabl B
JMaroHaJIbHbIE KOMIOHEHTBI TEH30Pa SHEPIHU-UMITYIIbCA 3aTyXal0T 0OpaTHO MPONOPLUOHAIIb-
HO 4ETBEPTOH CTENICHU COOCTBEHHOTO PACCTOSHHUS, @ INIOTHOCTH IIOTOKA SHEPTHHU BEJIET Ce0s KaKk
oOparHas msTasi CTENeHb JJIs BCeX 3HAYEHHUM MpOCTpaHCTBEHHOM pa3mepHocTH. MckitoueHu-
€M SBJIsIeTCA IUNIOTHOCTb SHEPruu B ciaydae D = 4. I KOCMUUYECKOH CTPYHBI B IPOCTPAHCTBE
MMUHKOBCKOTO MIOTOK SHEPI'UU OTCYTCTBYET, a JMaroHaJIbHble KOMIOHEHTHI 00PaTHO MPONOPIIH-
oHaybHbI (D + 1)-ii cTeneHn pacCTOSHUSL.

. Boruncnena ¢ynknus Baiitmana 11 MacCHBHOTO CKaJsIPHOTO IOJISL C MIPOU3BOJIBHBIM 3HAUeE-
HHUEM IapaMeTpa CBS3H C KPUBU3HON B TEOMETPUU JIBYX MapallieNIbHbIX OpaH, mepreHaANKYIsp-
HbIX TpaHune AdS. TeH30p 3HEpPTUU-UMITYIIbCa BAKyyMa MIOMHUMO JHATOHATBHBIX KOMIIOHEHT
COJICP>KUT HEHYJIEBOE HEMArOHAIbHOE HaNpshKeHHe. B 3aBUCHMOCTH OT TpaHUYHBIX YCIOBHM,
a TaK)Ke OT PAaCCTOSTHUM 10 OpaH, MIOTHOCTh SHEPTHH BaKyyMa MOXKET ObITh KaK IMOJIOKHUTEb-
HOM, Tak u oTpurarensHoil. Cuibl Kazumupa, neficTByrorniie Ha OpaHbl, UMEIOT IBE KOMIIOHEH-
Thl. [IepBasi COOTBETCTBYET CTaHIApTHOW HOPMaIbHOM CuUIle, a BTOpas napajuieJbHa OpaHam u
MpeICTaBIsieT cO00M BaKyyMHYIO CHITY C/IBHTA.

. B otnuume ot 3amaun o mapasuieNnbHbBIX IJIaCTUHAX B IPOCTPaHCTBE MUHKOBCKOTO, HOpMaJib-
Hble cuibl Kasumupa, neicTByome Ha OTaAeIbHbIe OpaHbl, pa3IUYHbI, €CIH IPaHUYHBIE YCIIO-
BHUS Ha 6paHax Pa3JInIHbIL. Ounu MOTYT 6LITB KaK OTTAJIKUBAIOIIUMU, TAK U IPUTATHBAIOIIHNMHU.
AHaJI0rMYHBIM 00pa30M, B 3aBUCUMOCTH OT KO3(h(PUIIMEHTOB B IPaHUYHBIX YCIOBUAX, Napa-
JIeNbHAs CUiIa HampasieHa K rpanune AdS wim ot Hee. OTaenbHbIe KOMIIOHEHTHI TaK)KE MOTYT
MEHSTH CBOI 3HaK B 3aBUCUMOCTH OT MexOpaHHOro pacTtosHus. [Ipu 60nbImX cOOCTBEHHBIX
pPacCTOSIHUSX MEXIy OpaHaMu MO CPaBHEHUIO C paanycoM KpuBU3HBI AdS 00e KOMIIOHEHTHI
cun Kasumupa 3aTyXxaroT 1o CTENEHHOMY 3aKOHY. /{11 MACCUBHOTO CKaJISIPHOTO MOJI TaKOe I0-
BCACHUC OTIINYACTCA OT MMOBCACHUA AJId IPOCTPAHCTBA MI/IHKOBCKOFO, TAC 3aTyXaHUC SABIIACTCA
OKCIIOHCHIIMaJIbHBIM.
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